otes ## PHYSICS 232/3 MARKING SCHEME | | | | | sion to mo | CiiC | | | | | 1mk
1mk | | | |-----|--|---|--|---|---------------------------|--------------------------|-------------------|-----------------------------|------------------------------|---|--|--| | (i) | accuracy ucm 35 40 45 50 55 60 70 | | | | | | | | | THIK | | | | , | vcn | 46.7 | 40.0 | 36.0 | 33.3 | 31.4 | 30.0 | 28.0 | | 5mks | | | | | uvcm2 | 1635 | 1600 | 1620 | 1665 | 1727 | 1800 | | | 1mk | | | | | u + vcm | 81.7 | 80.0 | 81.0 | 83.3 | 86.4 | 90.0 | 98.0 | | 1mk | | | | | | | | 1 | | | | | | Tillix | | | | (i) | SIGN 1600 D 1004 1005 | | | | | | | | | 2mks
1mk
1mk
1mk | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | 1mk | | | | | = 20cm; +2 | | | | | | | | | 1mk | | | | | | | | Slope = Focal length;
= 20cm; | | | | | | | | | | | Slope | | | n ; | | 60 | HO) | .K | 9 | 1mk
1mk | | | | | d is also the if the objection are then re- | = 2 ne focal ect is pla efflected | length; ced at the by the pla | principa | | | | | | 1mk
1mk | | | | | d is also the if the obje | = 2 ne focal ect is pla efflected | length; ced at the by the pla | principa | | | | | | 1mk
1mk
1mk | | | | | d is also the if the object are then received is next to the interest of i | = 2 ne focal ect is pla eflected the obje | length;
ced at the
by the pla
ct cross-v | e principa
ane mirro
vire | r along th | | | | | 1mk
1mk
1mk
1mk
20mk | | | | 0.2 | d is also the if the object are then real is next to the is next to the image. | = 2 ne focal ct is pla eflected the obje | length;
ced at the
by the pla
ct cross-v | e principa
ane mirro
vire | r along th | | | | | 1mk
1mk
1mk | | | | 0.2 | d is also the if the object are then received is next to the interest of the control cont | = 2 ne focal ct is pla eflected the obje | length; ced at the by the plact cross-v | principa
ane mirro
vire
trudents | value) | ne same j | path ar | nd hence | the image | 1mk
1mk
1mk
1mk
20mk
1mk | | | | 0.2 | d is also the if the object are then received is next to the second (b) L ₀ = (d) Mass (g) | = 2 ne focal ct is pla eflected the obje | length; ced at the by the plact cross-v | e principa
ane mirro
vire
trudents | value) | ne same j | path ar | 200 | the image | 1mk
1mk
1mk
1mk
20mk
1mk | | | | 0.2 | d is also the if the object are then resist is next to the distribution of distrib | ne focal ect is plate effected the object 56.2cm | length; ced at the by the plact cross-v (accept s | e principa
ane mirro
vire
trudents | value) 120 61.1 | 150
62. | path ar | 200
64.8 | 250
66.6 | 1mk
1mk
1mk
1mk
20mk
1mk | | | | 0.2 | d is also the if the object are then red is next to the is next to the is next to the image. (b) L _o = (d) Mass (g) L (cm) E = L-L _o (| ne focal ect is pla eflected the object. 56.2cm | length; ced at the by the plact cross-v (accept s | trudents 100 60.3 4.1 | value) 120 61.1 4.9 | 150
62.
6.0 | path ar | 200
64.8
8.6 | 250
66.6
10.6 | 1mk
1mk
1mk
1mk
20mk
1mk | | | | 0.2 | d is also the if the object are then red is next to the is next to the is next to the image. The image is next to | me focal ect is pla eflected the object | length; ced at the by the plact cross-v (accept s | e principa
ane mirro
vire
trudents | value) 120 61.1 | 150
62.
6.0 | path ar | 200
64.8 | 250
66.6 | 1mk
1mk
1mk
20mk
1mk
1mk
2mks
3mks | | | | .2 | d is also the if the object are then resist is next to the interest | me focal ect is pla eflected the object | length; ced at the by the plact cross-verse (accept seed accept se | trudents 100 60.3 4.1 8.74 | value) 120 61.1 4.9 9.25 | 150
62.
6.0
10. | 0
2
2
25 | 200
64.8
8.6
11.82 | 250
66.6
10.6
13.20 | 1mk
1mk
1mk
1mk
20mk
1mk
2mks
3mks | | | | .2 | d is also the if the object are then red is next to the is next to the is next to the image. The image is next to | me focal ect is pla eflected the object | length; ced at the by the plact cross-v (accept s | trudents 100 60.3 4.1 | value) 120 61.1 4.9 9.25 | 150
62.
6.0
10. | path ar | 200
64.8
8.6 | 250
66.6
10.6 | 1mk
1mk
1mk
20mk
1mk
1mk
2mks
3mks | | |