232/3 - PHYSICS MARKING SCHEME PAPER 3

1. (a) **Table 1**

Hole	1	2	3	4	5	6
Distance L(M)						
Time for 10 oscillations						
Periodic time T (S)						
$T^2(S^2)$						
$T^{2}L(S^{2}M)$						
$L^{2}\left(M^{2}\right)$						
	11/2	1½	1½	1½	1½	11/2

Total (9mks)

(b) Expected graph

(c) (i) Slope =
$$\frac{\Delta T^2 L}{\Delta L^2}$$

Student must show triangle for finding gradient on the graph.

- (ii) Y-intercept (1mk)
- (d) Value of K: Use the student values in c(i) and c(ii) above. (3mks)
- 2. (a) $f_o = 10$ cm

Table 2

I UNIC I								
L(cm)	2	3	4	5	6	7	8	9
χ(cm)								
1								
$L(cm^{-1})$								
	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

Total (4 marks)

- Values of χ must be upto 1d.p.

Teacher.co.k

Download this and other FREE materials from https://teacher.co.ke/notes

Gradient = $\frac{\Delta \chi}{\Delta^{1}/L}$ (Triangle must be shown on the graph) (3mks)

(d) $\chi = \frac{f^2}{L} + \frac{L(f + \ell)}{L}$ $f^2 \text{ is the gradient}$ Hence $f = \sqrt{Slope}$ Slope from the graph $\checkmark 3$

PART B

$$\overline{\text{(ii)}}$$
 E = 1.5 ± 0.1v \checkmark ①

(iii)
$$V = 1.4 \pm 0.1V$$
 $\checkmark ①$
 $I = 0.12A \pm 0.01A$ $\checkmark ②$

(iv)
$$E - V = Ir$$

 $0.1 = 0.12 \times r$ $\checkmark ①$
 $r = \frac{0.1}{0.12} = 0.83\Omega$ $\checkmark ①$

