PHYSICS PAPER 3 MARKING SCHEME

1. s

d,m	0	0.2	0.3	0.5	0.6	0.7	0.8	0.9
Time for 10 oscillations,(s)	24.08	22.80	21.77	19.87	18.85	17.77	16.62	15.39 ± 2
Period, T,(s)	2.408	2.280	2.177	1.987	1.885	1.777	1.662	1.539
Period ² T ² ,(S ²)	5.800	5.200	4.739	3.948	3.553	3.158	2.762	2.368

N.B;

- t(s) values should reduce and to atleast 2d.p at 1 mk for each correct value up max of 5 mks
- T,s should be correctly calculated to atleast 3d.p more 5 correct values 1 mk
- 4 and 5 correct values ½ mk
- less than 4 correct values 0mk

b) i)

- Label (1 mk) quantity and unit a must for each axis
- Sclae (1 mk) simple and uniform intervals on both axes
- plotting (2 mks) Each candidate plotted point to within small square on grid according candidates scale ½ mk for maximum of 2 mks
- line (1 mk) The line should have a negative slope and pass through at least 3 correctly plotted points

ii) Slope

When line is marked correct Intervals on line ½ mk

$$\Delta y$$

Substitution in $\Delta x \frac{1}{2}$ mk

correct evaluation to 3 d.p (1 mk)

(0.1 5.5) and (0.6 3.5)

$$G = \frac{3.5 - 5.5}{0.6 - 0.1} = -\frac{2}{0.5} = -4$$

c) i) Extending line till it cuts x-axis (1 mk)

Correct reading of L to within one small square (1 mk)

Accuracy
$$1.3 \le L \le 1.7$$
m

ii) Stating or implying slope, G = $\begin{array}{c} 5 \\ -39.478 \end{array}$

Substituting slope value i.e -4 = 5 (½ mk)

Correct evaluation to atleast 1 d.p ½ mk

Accuracy $9..0 \le S \le 11.0$ (½ mk)

2. Part 1

-
$$L_1$$
cm L_2 cm $\frac{L_1}{L_2}$
60 50.0 ± 2 0.60

60 27.5 ± 1 2.18

- Each correct L₂ value ½ mk (max 1mk)

-
$$N/B - L_2$$
 values should be to 1 d.p

- for each correct evaluation of $\frac{L}{L}$ to 2 d.p $\frac{1}{2}$ mk (max 1 mk)

- For each correct value of $f = \overline{M+1}$ correctly calculate to 1 dp

Getting average be substitution of f values ½ mk

$$f_1 + f_2$$

Correct evaluation to 1d.p of ² ½ mk

$$f_1 = \frac{L1}{M+1} = \frac{30}{1.6} = 18.75$$

$$f_2 = \frac{3.18}{3.18} = 18.87$$

$$\frac{f_1 + f_2}{2} = \frac{18.75 + 18.87}{2} = 18.81$$

Labelling - quantity and unit on both axes (1 mk)

- scale simple and uniform intervals (1 mk)
- Plotting plot to accuracy of small square at ½ mk each correctly plotted point for max 2
- Line should have negative slope and pass through at least 3 correctly plotted points.

Part II

ii)

Length L(cm)	20	30	40	50	60	70	
Length (100-L)cm	80	70	60	50	40	30	
Current I(A)	0.10	0.12	0.14	0.16	0.18	0.2	±0.02
$\frac{1}{I}(A^{-1})$	10.00	8.33	7.14	6.25	5.55	5.00	

- For (100 L) award 1 mk for all values correct
- for current, award ½ mk @ correct value
- (Total marks=3mks). Values should be correct to at least 2d.p

iv)

$$\frac{\Delta(100-L)cm}{\Delta_{\bar{l}}^{1}A^{-1}} = \frac{(975-65)cm}{0.13-0.15} = \frac{10}{-0.02}$$
= -500cmA

Intervals on line (1 mk)

Substitute of intervals in $\frac{\Delta y}{\Delta x}$ (1 mk)

Correct evaluation to nearest whole number (1 mk)

c) K =
$$\frac{S \times 1.5 \times d^2}{4} = \frac{500 \times 1.5 \times (0.08)^2}{4}$$

= 1.2

Substitution of values (1 mk)

Correct values to at leat 1 d.p 1mk