1. (a) d = 0.60cm $0.1131 cm^{3}$

 $\frac{22}{42}(0.6)^3$

 $= 0.1131 \text{cm}^3$

(1mk)

(1mk)

D = 1.40(b) $A = \frac{22}{28} \times (1.4)^2$ $= 1.54 \text{cm}^2$

(1mk)

 $h_0 = 5.3$ cm (c)

(1mk)

Table I

Number of ball bearings (N)	1	2	3	4	5	
Floating level h(cm)	5.6	5.8	6.0			
$h - h_o(cm)$	0.3	0.5	0.7			(6mks)

Download this and other FREE materials from https://teacher.co.ke/notes

(g)
$$(0.01)$$
 and $(3,0.7)$

$$S = \frac{Dh - h_o}{DN} = \frac{0.7 - 0.1}{3 - 0} \checkmark 1$$
= 0.2cm \(\frac{1}{3}\)

(2mks)

(h)
$$\frac{P_s}{P_1} = slope = \frac{P_s}{P_L} \quad \frac{V}{A} \Rightarrow \frac{P_L}{P_s} = \frac{S \times A}{V}$$

$$= \frac{0.2cm \times 1.54cm^3}{}$$

(2mks)

2. (b)
$$E = 3.20V$$

(c)
$$V = 2.30$$

 $I = 0.20$

Part B: TABLE 3

U(cm)	15	20	25	30	35	40	45	
V(cm)	25.0	19.0	15.0	15.0	14.0	13.0	12.5	
(U + V(cm))	40.0	39.0	40.0	45.0	49.0	53.0	57.5	(8mks)

(e) A GRAPH OF U + V AGAINST U

Using
$$U + V = 4K$$

 $39 = 4K$
 $K = 9.75cm$

$$U = 2K$$

$$20 = 2K$$

$$K = 10cm$$

$$K = \frac{09.75 + 10}{2.0}$$

$$= 9.875$$
cm

OR

