1. (I) (i) U = 21.0 cm (1 mk)

(ii) 
$$U = 79.0 \text{ cm}$$

(iii) 
$$d^2=79.0-21.0=58.0 \text{ cm}$$

$$(100)^2 - (58)^2$$

(iv) 
$$f = \frac{4 \times 100}{}$$

$$= 16.36 \text{ cm}$$

(II)

Table of results

| Hole                     | A     | В      | C     | D     | Е     |  |  |  |  |
|--------------------------|-------|--------|-------|-------|-------|--|--|--|--|
| Distance L(m)            | 0.04  | 0.06   | 0.08  | 0.10  | 0.12  |  |  |  |  |
| Time for 10 oscillations | 14.45 | 12.45  | 11.58 | 11.15 | 10.27 |  |  |  |  |
| Period time T            | 1.45  | 1.25   | 1.16  | 1.12  | 1.03  |  |  |  |  |
| $T^2S^2$                 | 2.10  | 1.56   | 1.35  | 1.25  | 1.06  |  |  |  |  |
| $T^2L$                   | 0.084 | 0.0936 | 0.108 | 0.125 | 0.127 |  |  |  |  |
| $L^2 \times 10^{-4}$     | 16.01 | 36     | 64    | 100   | 144   |  |  |  |  |

**GRAPH** 

(a) Slope

$$\frac{152 - 5.0}{110 - 10} = \frac{8.2}{100} \times 10^4 = 8.2 \times 10^4 \times 10^{-2}$$
$$= 8.2 \times 10^2$$

$$= 8.2 \times 10^{2}$$

The equation of the line is represented by (b)

$$T^2 = \frac{4\pi^2 L^2}{R} + \frac{4\pi^2 k^2}{R}$$

(i) Find the value of the constant R given that  $\pi = 3.14$ 

$$\left\lfloor \frac{4\pi^2}{R} \right\rfloor = slope$$

$$\left[\frac{4\pi^2}{R}\right] = slope \qquad \frac{4x\pi^2}{R} = 8.2 \times 10^2$$
 \sqrt{1mk}

$$R = 4.82 \times 10^{-2} \checkmark 1 \text{mk}$$

(ii) Find the value of the intercept c of your graph and hence find the value of K

(3 mks)

 $C = any reading of intercept correctly read \checkmark 1 mk$ 

$$\frac{4x3.142^2k^2}{4.82\times10^{-2}} = 7.5\times10^{-2}$$
  $\checkmark 1$ mk

$$K = \frac{7.5 \times 10^{-2} \times 10^{2} \cdot 4.82}{4 \times 3.142^{2}} = 0.911$$

2. (a)

(i) 
$$D = 0.36 \times 10^{-3} \text{m}$$

$$A = \frac{\pi D^2}{4} = \frac{\pi \times 0.36^2 \times 10^{-6}}{4} = 1.017 \times 10^{-6}$$







## (b) Table of resuots

| Teac | :her. | CO. | ke |
|------|-------|-----|----|
|      |       |     |    |
|      |       |     |    |

| e cm                  | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 70.0 | 80.0 |
|-----------------------|------|------|------|------|------|------|------|
| L cm                  | 91.0 | 81.0 | 73.0 | 65.5 | 60.0 | 55.0 | 46.5 |
| $\frac{1}{l} cm^{-1}$ | 1.10 | 1.23 | 1.37 | 1.53 | 1.67 | 1.96 | 2.15 |

## (c) Graph

(d) Slope S

(e) From the graph state the value of 
$$\frac{1}{l}(cm^{-1})$$
 when e=0 (1 mk)  
 $X - Intercept = 0.94 \times 10^{-2} cm^{-1}$ 

Correct reading of X-intercept

Correct reading of X-intercept
$$\frac{100R}{\pi} = \frac{R}{J}. \text{ Find the value of } J \text{ when } R = 10\Omega$$
(f) Given that  $e = \frac{R}{\pi} = \frac{R}{J}$ . (2 mks)

Y intercept = C= 
$$\frac{J}{J} = 0.65 \checkmark 1 \text{mk}$$
  

$$\frac{10}{J} = 65$$

$$\frac{10}{65} = 0.153$$

$$\checkmark 1 \text{mk}$$
But R = 10