

Kenya Certificate of Secondary Education PHYSICS PAPER 3 MARKING SCHEME

1. (a) $R_0 = 130 \text{gV}$

(c) $L_0 = 50.0 \text{cm} \pm 0.2 \text{cm} \sqrt{}$

(e) $L_1 = 37.1 \text{cm} \pm 0.2 \text{cm} \sqrt{}$

 $L_2 = 52.9 \text{cm} \pm 0.2 \text{cm} \sqrt{}$

(g)

(h) Graph

Mass m(g)	10	20	30	40	50	60	70	
L ₁ (cm)	37.1	34.8	32.5	31.6	28.8	27.4	25.9	
L ₂ (cm)	52.9	55.3	57.5	59.4	61.2	62.1	64.1	
$L_2 - L_o$ (cm)	2.9	5.3	7.5	9.4	11.2	12.1	14.1	
$L_2 - L_o$	0.0782	0.1523	0.2308	0.2975	0.3889	0.4416	0.5444	
L_1								

For any 6 ratio worked @ ½ mark

(i)
$$K = 40 - 20$$
 extraction $\sqrt{0.30 - 0.15}$ substitution $\sqrt{0.30 - 0.15}$ substitution $\sqrt{0.30 - 0.15}$ extraction $\sqrt{0.30 - 0.15}$

(j)
$$n = K$$

 1000
= 133.3 sub $\sqrt{1000}$
= 0.1333kg $\sqrt{1000}$

2. A. (b) $V = 30 \text{cm} \sqrt{\text{(c)}}$

U(cm)	V(cm)	I/ _U (cm ⁻¹)	¹ / _V (cm ⁻¹)	$I_{U} + I_{V} = I_{f}(cm^{-1})$
15	30	0.067	0.033	0.10
20	20	0.05	0.05	0.10
25	16.7	0.04	0.059	0.099
	•			\ \

(d) (i) Mean of $^{I}/_{f} = 0.1 + 0.1 + 0.099$ 3 $= 0.09967\sqrt{}$

(ii) Mean of f = 10.34cm $\sqrt{}$

2. B. (b) $V = 2.7V\sqrt{A} = 0.1A\sqrt{A}$

(c)

Length (cm)	80	70	60	50	40	30
P.d (V)	2.7	2.65	2.6	2.55	2.55	2.5
Current (A)	0.1	0.125	0.155	0.175	0.2	0.25
		√	√	√		

(d) (i) Graph of p.d (V) against current

(d) (i) Graph of p.d (V) against current

(e) Slope =
$$\frac{2.7 - 2.5 \sqrt{0.1 - 0.25}}{0.1 - 0.25}$$

= $\frac{0.2}{0.15}$
= $-1.33 \Omega \sqrt{0.15}$

Slope is the internal resistance√ of the cell

(f) y - intercept =
$$2.8V\sqrt{\pm 0.2V}$$

(e) Slope =
$$2.7 - 2.5\sqrt{0.1 - 0.25}$$

= 0.2
- 0.15
= $-1.33\Omega\sqrt{0.15}$

Slope is the internal resistance√ of the cell

(f) y – intercept =
$$2.8V\sqrt{\pm 0.2V}$$

