THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

232/3

PHYSICS

Paper 3

Apr. 2021 - 2½ hours

Name		Index Number
Candidate's Signatur	e	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer **all** the questions in the spaces provided in the question paper.
- (d) You are supposed to spend the first 15 minutes of the 21/2 hours allowed for this paper reading the whole paper carefully before commencing your work.
- (e) Marks are given for a clear record of the observations made, their suitability, accuracy and use.
- Candidates are advised to record their observations as soon as they are made.
- (g) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.
- (h) This paper consists of 8 printed pages.
- Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- Candidates should answer the questions in English.

For Examiner's Use Only

Question 1	a	С	e	f	g(i)	g(ii)	h(i)	h(ii)
Maximum Score	1	1	6	5	3	1	2	1
Candidate's Score								

Total

Question 2	С	d	e	f	j	k
Maximum Score	7	2	3	1	5	2
Candidate's Score						

Total

Grand Total

o. Ke

720

Question 1

You are provided with the following:

- two cells in a cell holder;
- a switch;
- a micrometer screw gauge;
- a nichrome wire mounted on a millimetre scale;
- a voltmeter;
- an ammeter;
- a jockey;
- connecting wires with crocodile clips.

Proceed as follows:

(a) Using the micrometer screw gauge, measure and record the diameter d of the wire.

d = mm

 $d = \dots m \tag{1 mark}$

(b) Set up the apparatus as shown in **Figure 1.**

Figure 1

(c) Using the voltmeter, measure the potential difference E across the battery before closing the switch.

 $E = \dots volts. (1 mark)$

(d) Adjust the length L of the wire to 0.1 m (10 cm). Close the switch, read and record the value of the current I in **Table 1**.

(e) Repeat (d) for the other values of L given in **Table 1**. Complete the table.

(6 marks)

Table 1

Length L (m)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
Current I (A)							
$\frac{1}{I}A^{-1}$							

(f) On the grid provided; plot the graph of $\frac{1}{I}$ (y axis) against L.

(5 marks)

	(g)	From	the graph, determine the:	
		(i)	gradient S;	(3 marks
				•••••
		(ii)	intercept C on the $\frac{1}{I}$ axis.	(1 mark
720				
	(h)	Giver		
		(i)	$\frac{4K_1}{\pi d^2 E} = S \text{ determine the value of } K_1.$	(2 marks)
A066		(ii)	$\frac{K_2}{E} = C$ determine the value of K_2 .	(1 mark

Ouestion 2

You are provided with the following:

- a metre rule;
- a biconvex lens:
- a source of light (bulb in a bulb holder, cells in a cell holder and a switch);
- a stand boss and clamp;
- a lens holder;
- a screen:
- a half metre rule;
- three pieces of plastic pipes A. B and C;
- a vernier callipers (to be shared);
- a stopwatch:
- some plasticine.

Proceed as follows

PART A

Clamp the bulb holder onto the stand. Arrange the bulb, the lens and the screen along the metre (a) rule as shown in Figure 2.

Figure 2

910119

Adjust the distance of the bulb from the lens to $U = 25 \,\mathrm{cm}$. Put on the switch and adjust the position of the screen from the lens so that a sharp image of the bulb is observed. Record the (b) distance V between the screen and the lens in Table 2.

(7 marks) Repeat part (b) for the other values of U shown in Table 2. Complete the table. (c)

Table 2

U cm	25	30	35
V cm			
$M = \frac{V}{U}$			
$F = \frac{V}{M+1}$			

e value of F. (2 marks)	Determine the average value of F	(d)

PART B

Using the vernier callipers measure and record the diameters of the three pipes. (e)

$$d_A$$
, d_B and d_C

$$d_A = \dots m$$
 (1 mark)

$$d_B = \dots m (1 mark)$$

$$d_C = \dots m (1 mark)$$

Measure and record the thickness X of the half metre rule. (f)

$$X = \dots m \qquad (1 \text{ mark})$$

720

(g) Place the pipe marked A on the bench and use the plasticine to stop it from rolling. (see Figure 3 (a)).

(h) Place the half metre rule onto the pipe such that it balances horizontally. Ensure that the half metre rule is perpendicular to the axis of the pipe.(see Figure 3 (b)).

(k)

Push one end of the balanced half metre rule slightly downwards and release it so that it oscillates (i) up and down. Measure and record in Table 3 the time for five complete oscillations.

Repeat the procedure in (g), (h) and (i) for the other pipes B and C. Complete Table 3. (j)

(5 marks)

Table 3

	Pipe A	Pipe B	Pipe C
Diameter d (m)			
Time for five oscillations			
Periodic time T (s)			
$\mathcal{Z} = T \sqrt{\frac{3(d-x)}{2}}$			

Determine the average value of Z .	(2 marks

THIS IS THE LAST PRINTED PAGE.

