

233/1

CHEMISTRY

PAPER 2

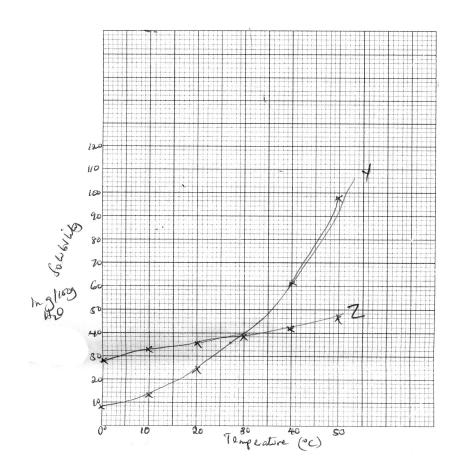
THEORY

TIME – 2HRS

SUKELLEMO PRE MOCK JOINT EXAMS

Pre Mock Examination JUNE 2022

MARKING SCHEMES


a)i) To remove dust particles $\sqrt{-1}$ than would otherwise "poison" that catalyst (1mk)ii) 9 atmospheres $\sqrt{1}$ (1mk)iii) To pre heat NH₃ and air to an optimum temperature (reactants) $\sqrt{1}$ To cool No (product) $\sqrt{}$ (2mks)iv) Platinum – Rhodium catalyst $\sqrt{}$ (1mk)v) I : $4NH_{3(g)}+50_{2(g)} \longrightarrow 4NO_{(g)}+6H_{2}O_{(g)} \sqrt{1}$ II : $2NO_{(g)}+O_{2(g)} \longrightarrow 2NO_{2(g)}\sqrt{1}$ (1mk)(1mk)III $4NO_{2(g)} + O_{2(g)} + 2H_2O_{(1)} \longrightarrow$ 4 HNO_{3(aq)} b)i) $2NaNO_{3(S)}$ \rightarrow $2NaNO_{2(g)} + O_{2(g)}\sqrt{}$ NaNO₃ =23 + 14 + 48 =85 Moles of NaNO₃ = $\underline{21.25\sqrt{1/2}}$ 85 (3mks) Moles of $O_2 \Rightarrow \frac{1}{2} \ge 0.25$ $= 0.125 \sqrt{\frac{1}{2}}$ Volume of $O_2 \Rightarrow 09.125 \text{ X } 22.4$ $= 2.8 dm^3$ $V = 280 \text{ cm}^3$ ii) Manufacture of fertilizers $\sqrt{}$ Manufacture of explosives $\sqrt{}$ Manufacture dyes and drugs $\sqrt{}$

Purification of metals eg.silver and gold Etching designs on some metals

(2mks)

2. (a) this is the maximum mass of salt/solute that can saturate 100g of water at a given temperature.

(b)

- (c) (i) $30g \text{ of } H_2O$ Accept 36g/100g water
 - (ii) 33.5°C
- (d) (i) Sol at $40 \text{oC} = 61 \text{g} / 100 \text{g H}_2\text{O}$

At 27°C

(ii) Sol at $40^{\circ}C = 61g/100g H_2O$

Sol at $27^{o}C=35g/100g\ H_{2}O$

Sol at $5^{\circ}C = 10g/100g$ of H₂O

(e) Y is more soluble than Z.

Y dissolves better at higher temperatures than Z

(f) Fractional crystallization - Separation of mixtures with different solubilities

3.	(a)	(i)	I:	Zn(OH) ₂	$\sqrt{1}$
			II:	ZnCl ₂	\checkmark^1
			III:	ZnO	\checkmark^1
		(ii)	$Pb_{(a)}^{2}$	$_{q)}^{2_{+}}+2Cl_{(aq)}^{-}\rightarrow$	$\bullet PbCl_{2^{(S)}} \checkmark^1$
		<····>	TT 1		

- (iii) White precipitate soluble in excess. \checkmark^1
- (b) Ammonia gas is polar and ionizes $\sqrt{1}$ in water which is polar. While it does not ionize in methylbenzene which is non polar.
- (c) (i) Calcium carbonate/magnesium carbonate.
 - (ii) Passing a solution of dilute hydrochloric acid or nitric (V) acid in the boiler. (1mk)

(d)
$$[Zn(OH)_4]^{2}$$

4a

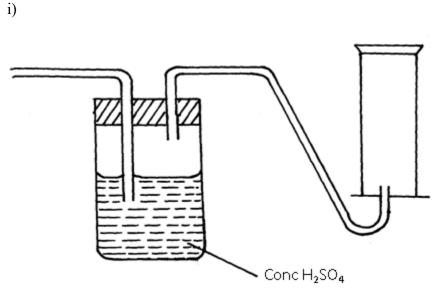
- i) Hygroscopy
- ii) Deliquescence
- iii) Efflorescence

b) i) $\left((Zn(C)) \right)$	$(H)4) \bigg]^{2-\sqrt{1}mk}$	ii) (Cu	$(OH)_4 \int^{2-} \sqrt{1}$	
	Fe	S	0	H ₂ O
	20.2	11.5	23.0	45.3
	56	32	16	18
	0.36	0.36	1.44	2.52√1mk
	1	1	4	7

(FeSO4.7H2O)=278 278n=278 n=1√1mk Formula FeSO4.7H2O√1mk

ii) No. of moles $\frac{6.95}{278} = 0.025$ moles $\sqrt{1}$ mk

0.025moles-250cm³


1000

$$\frac{0.025x1000}{250} = \frac{25}{250} = 0.1 \text{mole/litre} \qquad \sqrt{1 \text{mk}}$$

d)

- Add exess lead carbonate to dilute HNO₃, \checkmark 1mk
- shake and filter to remove unreacted carbonate $\sqrt{1/2}$ mk
- Add excess dilute HCl to the mixture $\sqrt{1/2}$ mk
- Filter to obtain lead(II) chloride as the residue $\sqrt{1/2}$ mk
- Rinse and Dry between filter paper to obtain solid $PbCl_2\sqrt{1/2mk}$

ii) – Catalyst NickelTemperature 150°C to 250°C

iii) magnesium is very expensive

it gives a mixture of gases including bad smelling and poisonous hydrogen

sulphide

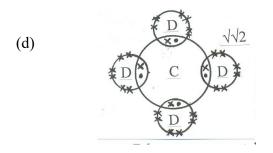
CuSO₄. 5H₂O

- v) Manufacture of ammonia
- Manufacture of hydrochloric acid
- Welding and cutting of metals
- Rocket fuel and in fuel cells.
- b) i) Slowly to allow ample time for reaction repeatedly to ensure all active air (oxygen) is used up
 ii) The brown copper turnings slowly changed black.

 $\frac{120 - 95.5}{120} \times 100$ $\frac{24.5}{120} \times 100 = 20.41667\%$

6. (a)
$$B-2:8\sqrt{\frac{1}{2}}$$

iii)


 $D-2:8:8\; \sqrt{1\!\!\!/_2}$

(b) (i) D $\sqrt{\frac{1}{2}}$

(ii) E $\sqrt{\frac{1}{2}}$

(c) Atomic radius of B is larger $\sqrt{1}$ than that of C. C has more protons. The outer energy level electrons are pulled $\sqrt{1}$ strongly to the nucleus reducing the atomic size.

(e) Element B has stronger metallic $\sqrt{1}$ bond (has more delocalized electrons) than A, hence higher amount of heat $\sqrt{1}$ energy is needed to break the bond.

(f) $2A_{(s)} + 2H_2O_{(1)} \longrightarrow 2AOH_{(aq)} + H_{2(g)}\sqrt{1}$

- Reject fully if unbalanced

- Award ½ mk if states are missing or any one state is wrong.

(g) Add water $\sqrt{\frac{1}{2}}$ to the mixture and stir.

Filter $\sqrt{\frac{1}{2}}$ to obtain lead (II) sulphate as $\sqrt{\frac{1}{2}}$ residue and sulphate of E as filtrate Dry the residue $\sqrt{\frac{1}{2}}$ to obtain lead (II) sulphate.

Evaporate $\sqrt{\frac{1}{2}}$ the filtrate to dryness $\sqrt{\frac{1}{2}}$ to obtain the solid sulphate of E.

- a) Ethylpropanoate
- b) But-2,3-diene

b) i) A - yeast $\sqrt{1}$	(1mk)
I - fractional distillation	(1mk)
B - Sodium ethoxide	(1mk)
C - Hydrogen	(1mk)
D - Ethene	(1mk)
E - polyethene / polythene	(1mk)

(4mks)

(1mk)

(3mks)

iii) I : C₆H₁₂O₆ \rightarrow 2C₂H₅O +2CO₂ \checkmark moleofsugar $\frac{144000}{180}$ = 800moles

 $molesofethanol = \langle 2x800 \rangle$ = 1600moles

II

 $nfm \rightarrow 2x12 + 6 + 16 = 46$

 $massofethanol = \frac{46x1600}{1000}$ = 73.6kg