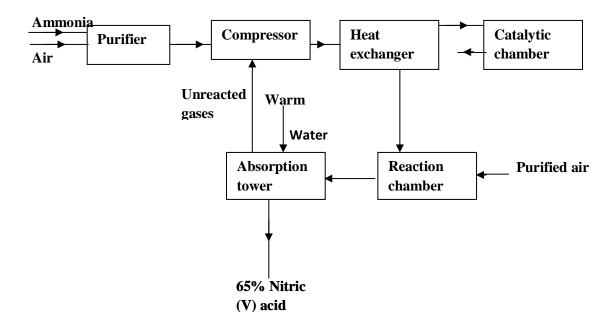


Name:	Adm Number:Class:
Index number	••••
233/2	
CHEMISTRY	
PAPER 2	
TIME – 2HRS	

SUKELLEMO PRE MOCK JOINT EXAMS

Pre Mock Examination JUNE 2022


INSTRUCTIONS TO THE CANDIDATES:-

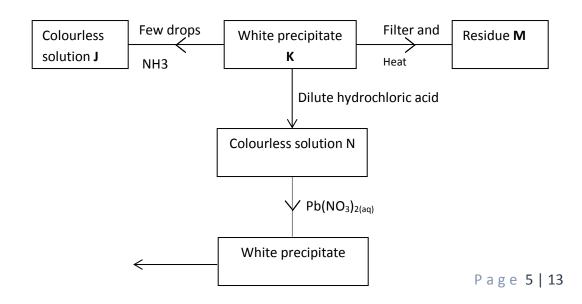
- Write your Name, Index and admission number in the spaces provided.
- Answer *all* the questions in the spaces provided.
- Mathematical tables and electronic calculators may be used
- All working **MUST** be clearly shown where necessary.

For Examiners Use Only

Question	Maximum score	Candidate's score
1	12	
2	12	
3	10	
4	14	
5	12	
6	12	
7	08	
Total	80	

1. (a) The diagram below shows part of the processes in the manufacture of Nitric (V) acid

1) Explain the role of the purifier	(1mk)
(ii) State the pressure used in the compressor	(1mk)
(iii) State two functions of the heat exchanger	(1mk)
(iv) Name the catalyst used in the catalytic chamber	(1mk)

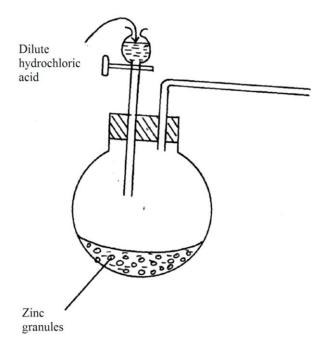

(v) Write equation of the reaction that takes place in:	
(I) Catalytic chamber	(1mk)
(II) Reaction chamber	(1mk)
(III) Absorption tower	(1mk)
(b) (i) Calculate the volume of Oxygen that would be obtained from the decomposition of Sodium Nitrate at s.t.p (1 mole of a gas occupies 22.4dm3 at stp, N=14, Na=23, O=(3mks)	of 21.25g
(c) Name two commercial uses of Nitric (V) acid	(2mks)
2. In an experiment to investigate the solubility of solid Y and Z, the following reobtained.	esults were

Temperature °C	0	10	20	30	40	50
Solubility of solid Y (g/100g of water)	8	13	24	38	61	98
Solubility of solid Z (g/100g of water)	28	32	35	38	42	46

	a)	7	Wl	nat	t d	ο :	yc	u	u	no	de	rs	ta	no	d l	by	/ t	he	e t	e	rn	1 8	so	lu	b	ili	ty	?															(1	m	ık)
b) axis		•••	the																											a	nc	11 7 7	Z	agg	ga	in	st		cer		tu						
																																								# # #							
																																								#							
	(:) i) 			e s														er	np 	ре 	ra 	ıtu	ır	e ((2	5°	°C)									 	 	• • •		 	((1 1	m]	k)	· ·
	(<u>*</u>	ii) 		Γh	e t	er	np 	er 	at		re 	a:	t v	wł	nio	ch 	. S	ol 	u 	bi 	lit		0	f	Y 	is	s 4 	\5;	g/ 	10	00)g 	O 1	f v	va	te	r.	 	 			 		(1	m	nk)

	d)	If a solution of Y contains 35g of solid in 100g of water is cooled from 40°c, I	Determine
		(i) The temperature at which the crystals will first form	(1mk)
	(ii)	The mass of crystals deposited if the solution is cooled to 5°c	(1mk)
	e)	Compare the solubilities of Y and Z in water.	(2mks)
	f)	Give one application of solubilities.	(1mk)
3	C+	andy the flow chart below and answer the questions that follow	

3. Study the flow chart below and answer the questions that follow.


	Resid	lue M v	was yellow when hot and white when cold.	
	(a)	(i)	Identify.	
I	White	e precip	pitate K	(1 mark)
II	Solut	ion N		(1 mark)
Ш	Resid	lue M		(1 mark)
			equation for the reaction of solution N with Pb(NC	
(iii)	Write	e observ colour	vations that would be made when ammonia solutio less solution N .	n is added dropwise till in (1 mark)
	(b)	Amn	nonia gas bubbled into water forms a solution whice the solution formed when it is bubbled through ain.	ch conducts electricity h methylbenzene does not. (2 marks)
	(c)		ers used for boiling hard water are normally covere etime. What is the chemical name for boilers scales?	ed with boilers scale after (1 mark)
		(ii)	How is the boiler scale removed?	(1 mark) Page 6 13

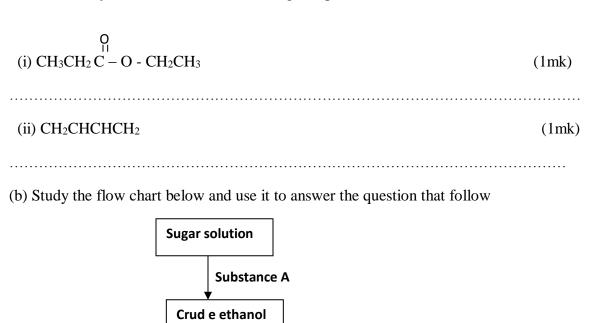
	(d)	Write the formula of the anion in solution J .	(1 mark)
	Name	each of the processes described below which takes place w	when salts are exposed to
(i)		drous copper (II) sulphate becomes wet.	(1 Mark)
(ii)	Comm	on table salt forms an aqueous solution	(1 Mark)
(iii)	formu	crystals of sodium carbonate Na ₂ CO ₃ .10H ₂ 0 becomes cover la Na ₂ CO ₃ .H ₂ O	(2 Marks)
		the formula of the complex ion formed in each of the reactinetal dissolves in hot alkaline solution	ions described below. (1Mark)
(ii) (iii)	Copper	hydroxide dissolves in excess ammonia solution	(1Mark)
	_	rated salt has the following composition by mass. Iron 20.2	2%, Oxygen 23%,
Sulphi (i)	Deter	% and water 45.3%. Its relative formula mass is 278 mine the formula of the hydrated salt. 56 , $S = 32$, $O = 16$, $H = 1$)	(3Marks)

(ii) 6.9g of the hydrated salt was dissolved in distilled water and the total volume made to 250cm³ of solution. Calculate the concentration of the salt solution in moles per litre. (2Marks)

(d) Describe how a solid sample of lead (II) chloride can be prepared reagents:- dilute nitric acid, dilute hydrochloric acid and lead carbonate.	2

5. a) The set up below was used to prepare dry hydrogen gas.

i) Complete the diagram to show how dry sample of hydrogen gas can be collected. (3mks)


ii) Hydrogen gas is used in hardening of oils into fats during the manufacture of n	nargarine. Give
two conditions necessary for the process to occur.	(2mks)
iii) Give a reason why the following are not used in preparation of hydrogen gas i a) Magnesium metal	n the lab(2mks)
b) Iron	
 iv) Write the formula of the substance added in preparation of hydrogen to make t proceed faster 	the reaction (1mk)
v) Other than hardening of oils, state two other uses of hydrogen.	(1mk)
b) In an experiment to determine the proportion of oxygen in air, copper turnings excess along a combustion tube connected to two syringes of 120cm ³ each in volucontained 120cm ³ of air while syringe S was empty as shown.	
Copper turnings	
Concernosco VIII	
/	
Syringe S Syringe R	

Air was passed over the heated turnings slowly and repeatedly until there was no further change in volume. 95.5cm^3 of air remained in syringe R.

i) Why	was air passed ov	er heated copper slowly	y and repeatedly.	(1mk)
ii) State	e one observation	made in the combustion	n tube during the experi	ment. (1mk)
iii) Det	ermine the percen	tage of oxygen used du	ring the experiment.	(1mk)
Use the	e table below to an	nswer the questions that	follow.	
(The le	tters are not the ac	ctual symbols of the ele	ments)	
	Element	Atomic number	Melting point (⁰ C)	
	A	11	97.8	
	В	13	660	
	С	14	1410	
	D	17	-101	
	Е	19	63.7	
	te the electronic a	rrangement for the ions	formed by the element	s B and D (½ mark)
	D			(½ mark)
	ect an element wh			
(i) a po	or conductor of el	ectricity		(½ mark)
(ii) mos	st reactive metal _			(½ mark)

(c) Explain briefly how the atomic radii of element B and C compare. (2	2 marks)
(d) Use dots (•) and crosses (x) to represent outermost electrons and show the in the compound formed between C and D.	the bonding (2 marks)
in the compound formed between C and B.	(2 marks)
(e) Explain why the melting point of element B is higher than that of element A.	(2 marks)
(f) Write an equation for the reaction that takes place between element A and water	(1 mark)
(g) Describe how a solid mixture of the sulphate of element E and lead (II) sulphate separated into solid samples.	(3 marks)

7. (a) Give the systematic names for following compounds;

Conc. H₂SO₄

180°C

Substance D

Compound E

Polymerization

Process I

Pure ethanol

(i) Name:

Gas C

Substance B+

Sodium

Metal

Substance D		(½mk)
Compound E		(½mk)
II. If 144kg of sugar (C ₆ H ₁₂	₂ O ₆) was used to produce ethanol	l in this process, calculate
the mass in kg of ethanol produced (C	C=12.H=1, O=16	(3 marks)

THIS IS THE LAST PRINTED PAGE. $\,$

STOP.