| NAMEINDEX NUMBER | | | | | | | | | | | | |---|---|--|--|--|--|--|--|--|--|--|--| | 121/1 | | | | | | | | | | | | | MATHEMATICS PAPER 1. | | | | | | | | | | | | | PRE-MOCK 2022. | | | | | | | | | | | | | 2 ½ Hours | | | | | | | | | | | | | SUKELLEMO | | | | | | | | | | | | | Instructions to Candidates | | | | | | | | | | | | | (a) Write your name and index number in the spaces provided below (b) Sign and write the date of examination in the spaces provided above. (c) The paper consists of TWO sections: Section I and Section II. (d) Answer ALL questions in Section I and ONLY five from Section II. (e) All answers and working must be written on the question paper in the spaces provided below each question. (f) Show all the steps in your calculations, giving your answers at each stage in the below each question (f) Marks may be given for correct working even if the answer is wrong. (g) Non - programmable silent calculators and KNEC Mathematical tables may be sed except where stated otherwise. (g) The paper consists 14 printed pages. For Examiner's use only Section I | | | | | | | | | | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Tota | ı | Section II GRANT | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Total | |----|----|----|----|----|----|----|----|-------| | | | | | | | | | | | | | - | 1 | | | | | | ## **SECTION 1 (50 MARKS)** ## Answer all the questions in the space provided below each question 1. Find the equation of a straight line passing through the points A (1,-3) and B (-2, 5). Express your answer in the form ax + by = where a, b and c are integers. (3marks) MI $$\frac{y-s}{x+2} = -\frac{8}{3}$$ MI $$3(y-s) = -8(x+2)$$ $$3y-1s = -8x-16$$ AT $$3y + 8x = -1$$ 3) 2. Evaluate without using mathematical tables or calculator $\frac{-10 \div 2 + 6 \times 4 - 8 \times 5}{-5 + (-12) \div 3 \times 2}$ (3marks) BI BI $$-21$$ -13 $= 1\frac{8}{13}$ (Z) 3. Solve for x in the equation $\frac{Cos(2x-30)^{\circ}}{Sin(3x+10)^{\circ}} = tan45^{\circ}$ (3marks) $$\cos (3x-30)^{\circ} = \sin (3x+10)^{\circ}$$ $$\cos (3x-30)^{\circ} = \cos 90 - (3x+10) = 2x-30 = 90 - (3x+10) = 2x-30 = 90 = 3x+10 = 3x+10$$ MI $$5x - 20 = 90$$ $$5x = 110$$ $$x = 22$$ AI 4. Two taps P and Q together can fill a water tank in 6 minutes. Tap P alone takes 5 minutes longer than tap Q. How many minutes does it take tap P alone to fill the tank? (3marks) $$\frac{1}{5000} + \frac{1}{x} = \frac{1}{6}$$ $$6(x + 5000) = x(x+5)$$ $$6x + 6x + 30 = x^{2} + 5x$$ $$x^{2} - 7x - 30 = 0$$ $$x(x-10) + 3(x-10) = 0$$ $$(x+3)(x-10)=0$$ M $x = -3 \approx 10$ M $Top p = 5+10$ A = 15 min test 3 5. Given that, $27^{5x-2y} = 243$ and $81^{2x-y} = 3$, Calculate the values of x and y. (3marks) $$3^{(5x-2y)} = 5$$ $$3(5x-2y) = 5$$ $$15x - 6y = 5$$ $$4(2x-y) = 1$$ $$4(2x-y) = 1$$ 6. A point P is mapped onto P' by a negative quarter turn about the origin. P' is mapped onto P" by a translation represented by the vector $\binom{-2}{3}$. If P" has coordinates (11,-5) determine the coordinates of $$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ y \\ y \end{pmatrix} = \begin{pmatrix} y \\ y \\ y \\ -\begin{pmatrix} 1 \\ - \\ - \\ -\begin{pmatrix} 1 \\ - \\ - \\ -\end{pmatrix} \end{pmatrix}$$ $$y-2=11$$ $$y=13$$ $$x+3=-5$$ $$x=-8$$ $$P(-8,13)$$ $$A$$ $$(3marks)$$ $$M_1$$ $$A$$ $$(3)$$ 7. A metallic pipe which is 21 meters long has an internal radius of 13 cm and an external radius of 15 cm. if the density of the metal is 8620 kg/m³, find its mass. $$Mass = 8620 \times 0.3696$$ $$= 8,620 \times \frac{3696}{1000}$$ $$3,185.952$$ $$3,186 \text{ lcg V}$$ $$30$$ 8. Using logarithms evaluate $$\sqrt[3]{\frac{82.73 \times 0.2943^2}{613.5}}$$ (3marks) $\sqrt[3]{0.2943^2}$ T. 4688×2 $\sqrt[3]{3.9376}$ $\sqrt[3$ 9. A proper fraction is such that the denominator exceeds the numerator by 3. If 2 is subtracted from both 10. Given that OM = 2i + 3j - 6k and ON = -3i + 5j + k. Find the magnitude of MN to 2 decimal (3marks) places. ces. $$MN = \sqrt{(3-2)^2 + (5-3)^2 + (1-6)^2}$$ $= \sqrt{25 + 4 + 49}$ $= \sqrt{78}$ $= 8.832$ $= 8.83$ $= 8.83$ 11. Find the range of the integral values of x in the inequality 10 < 3(x + 2) < 35, giving your answer (3 Marks) in the form $a \le x \le b$: 12. Simplify completely $$\frac{2-2x}{6x^2-x-12} \div \frac{x-1}{2x-3}$$ (3marks) $$\frac{2(1-x)}{6x^{2}-9x+8x-12} = \frac{-2(x-1)}{(3x+4)(2x-3)} \times \frac{2x-3}{(x-1)}$$ $$\frac{-2(x-1)}{3x(2x-3)+4(2x-3)} = \frac{-2}{3x+4}$$ $$\frac{-2(x-1)}{(3x+4)(2x-3)}$$ $$\frac{-3(x-1)}{(3x+4)(2x-3)}$$ $$\frac{-3(x-1)}{(3x+4)(2x-3)}$$ $$\frac{-3(x-1)}{(3x+4)(2x-3)}$$ $$\frac{-3(x-1)}{(3x+4)(2x-3)}$$ $$\frac{-3(x-1)}{(3x+4)(2x-3)}$$ $$\frac{-3(x-1)}{(3x+4)(2x-3)}$$ 13. The marked price of a recliner sofa set in a furniture store was ksh 400,000.A customer bought the recliner at 10% discount. The dealer still made a profit of 20%, Calculate the amount of money the dealer paid for the recliner. (3marks) $$100\% - 3400,000$$ $90\% - 390 \times 400,000$ 100 $= 360,000$ $120\% - 360,000$ $= 300,000$ $= 300,000$ 14. Draw a line AB of length 9 cm. On one side of line AB construct the locus of a point P such that the area of triangle ABC is $13.5~\rm cm^2$. On this locus locate two positions of a point P1 and P2 such that 15. Given that the area of an image is four times the area of the object under a transformation whose matrix is $\begin{pmatrix} x & x-4 \\ x+8 & x \end{pmatrix}$, find the possible value of x. (3 marks) $$x^{2} - (cx - 4)(x + 8) = 44$$ $x^{2} - (x^{2} + 4x - 32) = 4$ $x^{2} - (x^{2} + 4x - 32) = 4$ $-4x = -28$ $x = 7$ - MI - MI - A1 (3) 16. Construct a triangle ABC in which AB = 5cm and AC = 8cm and $\angle ABC = 105^{\circ}$. Using line AC, locate point x on AB produced such that AX: XB = 3: -2. (4marks) - Bi Construction of - B, Correct triangle ABC - By correct location of point x ## **SECTION II (50 MARKS)** ## Answer only five questions in this section 17. The table below shows the weekly salary (k£) paid to workers in a school. | Salary (k£) | $50 \le x \le 100$ | $100 \le x \le 150$ | $150 \le x \le 250$ | $250 \le x \le 350$ | $350 \le x \le 500$ | |----------------|--------------------|---------------------|---------------------|---------------------|---------------------| | No. of Workers | 25 | 27 | 30 | 26 | 24 | a) Calculate the differences between the mean and the median. (6 marks) | a) Calc | urate t | ne dinter | clices between | ich me m | ean and t | |----------|---------|-----------|----------------|----------|-----------| | 0-50 | 1 f | 1/x V | IXXV | 1 cf | Ifd \ | | 50 - 100 | 25 | 75 | 1875 | 25 | 0.5 | | 100-150 | 27 | 125 | 3375 | 52 | 0.54 | | 150-250 | 30 | 200 | 6000 | 82 | 0.3 | | 250-350 | 26 | 300 | 7800 | 108 | 0.26 | | 350-500 | 24 | 425 | 10,200 | 132 | 0.16 | | 506-650 | ξf | 575 | | | | | | =132 | | Efx | | | | | | | 29,250 | | | | | | | | T | 1 | Mean = $$\frac{29250}{132}$$ MI = 221.60 MI Median = 66^{H} position MI $150 + 82 - 1$ MI $150 + (66 - 52) \times 1000$ MI 157 AT $221.60 - 157$ 64.60 b) Draw a frequency polygon to illustrate the above information. (4marks) 10 | 18. a) Complete | the table | of values | for the equation. | $y = -2x^2 + x + 8.$ | |-----------------|-----------|-----------|--------------------|----------------------| | | | 01 | TOT CITE OCICIONI, | , 20 10 10. | | 10 | 1 | |-----------|-----| | 1 /122011 | 100 | | (2marl | 100 | | (| , | | X | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | |---|-----|----|----|---|---|---|----|-----| | у | -13 | -2 | 5 | 8 | 7 | 2 | -7 | -20 | Br b) Use the values above to draw the graph of $$y = -2x^2 + x + 8$$. c) Using the graph drawn above Solve the equations:- (i) $$2x^2 = x + 8$$ 1) $$2x^2 = x + 8$$ $-2x^2 + x + 8 = 0$ $\frac{-2x^2 + x + 8}{0} = \frac{y}{0}$ $x = -1.78 \text{ or}$ $x = 2.2$ (ii) $-2x^2 + 4x + 12 = 0$ $$x = -1.78 \text{ or}$$ (ii) $$-2x^2 + 4x + 12 = 0$$ (ii) $$-2x^2 + 4x + 12 = 0$$ $-2x^2 + x + 8 = y$ $-3x - y = y$ (3marks) $$x = -1.55$$ $x = 3.67$ BI BI 19. Three towns P, Q and R are such that Q is 16 km north of P and the distance of R is 22 km from P and on a bearing of 60° from Q. a). Using a scale of 1cm to represent 4km, Make a scale drawing showing the relative positions of the three towns. (3marks) b) Using the scale drawing above, find the i) Distance of R from Q. (1mark) B1 ii) Bearing of P from Q. (1mark) Bi iii) How far town R is east of Q From R is east of Q (17 × 4 = 18.815 $$\frac{1}{18.150.4}$$ (1mark) c) A Passenger in an aero plane after take-off from town R spotted town P at an angle of depression of 48°, by means of a scale drawing determine the vertical height of the plane at town R. (3marks) Hegat 48° at p 36.41cm Bi Correct locotion of position 35.5to.4 ov 3550±400 20. a) The equation of a straight line L_1 is of the form 3y + 2x = 5. L_1 is perpendicular to L_2 and meets it at the point where X = -2, determine the equation of L_2 in the form y = mx + cwhere m and c are constants. (5marks) $$3y = -2x + 5$$ $$7x = -2x + 5$$ $$7x = -2x + 5$$ $$9x 6$$ $$2x =$$ MI AI Bi b) L_3 is parallel to the line L_2 and passes through the point (-3,2), find the equation of L_3 , leaving your answer in its double intercept form. $$\frac{y-2}{x+3} = \frac{3}{2}$$ $$3(x+3) = \lambda(y-2)$$ $$3x+9 = 2y-4$$ $$3x-2y = -13$$ $$\frac{3x}{13} + \frac{3y}{13} = 1$$ $\frac{x}{-\frac{13}{3}} + \frac{4}{\frac{13}{13}} = 1$ x+3 3(x+3)=2(y-2) 3x+9=2y-4 $-\frac{13}{3}$ $\frac{x}{3}$ $\frac{13}{2}$ $\frac{x}{3}$ $\frac{x}{3}$ MI c) Determine the angle of inclination of L_2 to the Y-axis. (2marks) - 21. The points **P**, **Q**, **R** and **S**, have position vectors **2p**, **3p**, **r** and **3r** respectively, relative to an origin O. A point **T** divides **PS** internally in the ratio 1:6. - a) Find, in its simplest form OT, QT and TR in terms of p and r. (6 marks) $$\begin{array}{lll} OT &= & 3x + \frac{12}{7} \\ OT &= & 90 + 0T \\ &= & -3p + \frac{3}{7} \\ &= & -3x - \frac{12}{7} \frac{12$$ b) Show that the points Q, T and R, are collinear. (3marks) $$QT = \frac{3}{7} \left(\frac{x}{x} - \frac{3p}{3p} \right)$$ $$TR = \frac{4}{7} \left(\frac{x}{x} - \frac{3p}{3p} \right)$$ $$\frac{4}{7} QT = \frac{3}{7} TRV$$ \frac{3}{$$ MI mi A (1mark) 10 22. In the figure below, O₁ and O₂ are the centers of the circles whose radii are 5 cm and 8 cm respectively. The circles intersect at A and B and angle $AO_1O_2 = 64^\circ$. Calculate the area of the:- a) Sector (2marks) ii) AO2B (3 marks) $$\frac{8}{\sin 64} = \frac{5}{\sin \alpha}$$ $$\sin \alpha = \frac{5 \times \sin 64}{8}$$ $$\sin \alpha = 0.5617$$ $$\lambda = 34.18^{\circ}$$ $$2\alpha = 68.36^{\circ}$$ b) Intersecting region. ntersecting region. (3marks) $$(27.94 - \frac{1}{2} \times 25 \times 5 \times 128) + 38.19 - \frac{1}{2} \times 64 \times 5 \times 1068.36$$ $27.94 - 9.850$ $38.19 - 29.74$ B1 c) The shaded region. (2marks) $$9.850 + 29.74 - 26.54$$ M1 $$39.59 - 26.54$$ 23. a) Find the x –intercept of the curve $y = (x+2)(x-1)^2$. $$(x+2)(x-1)=0$$ (1mark). (2marks) MI AT $$y = (x+2)(x^2-2x+1)$$ b) Find the gradient function of the curve $$y = (x+2)(x-1)^2$$ $$y = (x+2)(x^2-2x+1)$$ $$y = x^3-2x^2+2x^2+x-4x$$ $$Y = \chi^3 - 3\chi$$ $$\frac{dy}{dx} = 3x^2 - 3v$$ c) Find the co-ordinates of the turning point. Hence sketch the curve $y=(x+2)(x-1)^2$. $$(1,0)$$ $$4^{1}y = 6x \quad 9 + x$$ $$\frac{dy}{dx} = 6x \quad \text{at } x = 1$$ When $$x = 1$$ $y = (1+2)(-1-1)^2$ $$y = 4$$ $$(-1, 4)$$ $$(-1, 4$$ $$\int_{-2}^{7} \left(x^3 - 3x \right)$$ - 24. P and Q are two points on latitude 40°N. Their longitudes are 30°E and 150°W respectively. Find to one decimal place : (Take the radius of the earth = 6370km and $\pi = \frac{22}{5}$) - a) The distance in km between P and Q along the parallel of latitudes. (2marks) différences in longitude = 180 180 x 22 x2 x 6370 x 60540 15336, 2 b) The shortest distance along the earth's surface between P and Q in km. (3marks) BI 8272.71 c) A weather forecaster reports that the center of a cyclone at (40°N, 60°W) is moving due north at 24 knots. How long will it take to reach a point (45°N, 60°W). (2marks) differences in latitude = 45-40 $$+6^{\circ}N$$ $\Delta = 5 \times 60 = 300 \text{ NMV}$ M_{1} Time = $\frac{300}{24}$ 12.5 hrs d) A plane leaves P at 2.15 pm at a speed of 350 knots to town R (40°N, 65°E). Determine the time at R when the plane arrived. differences in longitudes = 65-0 = 350 Time = $\frac{1608.7}{350}$ = 4.596 Hrs 35724 350 2hrs 20min 14 $\frac{2.15}{4.35}$ 61 AI