1. Trigometric ratios 3

1. Complete the table below by filling in the blank spaces.

X^0	00	30^{0}	60^{0}	900	120 ⁰	150^{0}	180 ⁰	210^{0}	240^{0}	270^{0}	300^{0}	330^{0}	360°
Cos x	1.00		0.50			-0.87		-0.87					
2cos ¹ / ₂ x	2.00	1.93					0.50						

(2mks)

On the grid provided, using a scale of 1 cm to represent 30^{0} on the horizontal axis and 4cm to represent 1 unit on the vertical axis draw the graph of $y = \cos x^{0}$ and $y = 2 \cos \frac{1}{2} x^{0}$. (4mks)

(a) State the period and amplitude of $y = 2 \cos \frac{1}{2} x^0$

(2mks)

(b) Use your graph to solve the equation $2 \cos \frac{1}{2} x - \cos x = 0$.

(2mks)

2. a) Complete the table below by filling in the blank spaces

X	-90	-75	-60	-45	-30	-15	θ	15	30	45	60	75	90
3cos2x-1	-40	-3.6		-1.0	0.5	1.6		1.6	0.5		-2.5	-3.6	-4.0
2sin (2x+30)	-1.0	-1.73		-1.73	-1.0	0		1.73	2.0		1.0	0	-1.0

b) On the grid provided, draw on the same set of axes the graphs of $y = 3\cos 2x - 1$ and

 $y = 2\sin(2x + 30^{\circ})$ for $-90^{\circ} \le x \le 90^{\circ}$. Using a scale o 1 cm for 15° on axis and 2 cm for I unit on the y-axis (5mks)

c) State the period of $y = 3\cos 2x - 1$

(1mk)

d) Solve the equation $2\sin(2x+30^{\circ})-3\cos 2x+1=0$

(2mks)

3. Complete the table below by filling in the blank spaces.

X°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
Cos x	1.00		0.5			-0.87°		-0.87°					
2 cos ½ x°	2.00	1.93				0.52			-1.00				-2.00

Using the scale 1 cm to represent 30° on the horizontal axis and 4cm to represent 1 unit on the vertical axis, draw on the grid provided, the graph of $y = \cos x^{\circ}$ and $y = 2 \cos \frac{1}{2} x^{\circ}$

a) Find the period and amplitude of $y = 2\cos \frac{1}{2} x^{\circ}$

(2mks)

b) Describe the transformation that maps the graph of $y = \cos x^{\circ}$ on the graph of $y = 2 \cos \frac{1}{2} x^{\circ}$.

(2mks)

4. The table below gives some values of $y = \sin 2x$ and $y = 2 \cos x$ is the range given. (a) Complete

X°	-225	-180	-135	-90	-45	0	45	90	135	180	225
$y - \sin 2x^3$	-1.0		1.0			0			-1.0		1.0
$y = 2\cos x^3$	-1.4		-1.4			2.0			-1.4		-1.4

- (b) On the same axes, draw the graphs of $y = \sin 2x$ and $y = 2 \cos x$.
- (c) Use your graph to find in values of x for which $\sin 2x 2 \cos x = 0$.
- (d) From your graph
 - (i) Find the highest point of graph $y = \sin 2x$.
 - (ii) The lowest point of graph $y = 2 \cos x$.
- 5. (a) Copy and complete the table below for $y = 2\sin(x + 15)^{\circ}$ and $y = \cos(2x 30)^{\circ}$ for $0^{\circ} \le x \le 360^{\circ}$

X	0	30	60	90	120	150	180	210	240	270	300
$y = 2\sin(x+15)$											
$y = \cos(2x-30)$											

- (b) On the same axis draw the graphs:
 - $y = 2\sin(x + 15)$ and $y = \cos(2x 30)$ for $0^{\circ} \le x \le 360^{\circ}$
- (c) Use your graph to:
 - (i) State the amplitudes of the functions $y = 2\sin(x + 15)$ and $y = \cos(2x 30)$
 - (ii) Solve the equation $2\sin(x+15) \cos(2x-30) = 0$
- 6. The diagram below shows a frustum of a square based pyramid. The base ABCD is a square of side 10cm. The top A¹B¹C¹D¹ is a square of side 4cm and each of the slant edges of the frustum is 5cm

Determine the:

- i) Altitude of the frustrum
- ii) Angle between AC1 and the base ABCD
- iii) Calculate the volume of the frustrum
- 7. (a) Compete the table below:

$$y = 3\sin(2x + 15)^{0}$$

X	-180	-150	-120	-90	-60	-30	0	30	60	90	120
y	0.8			-0.8			0.8		21		

- (b) Use the table to draw the curve $y = 3\sin(2x + 15)$ for the values $-180^{\circ} \le \theta \le 120^{\circ}$
- (c) Use the graph to find:
 - (i) The amplitude
 - (ii) The period
 - (iii) The solution to the equation:-

$$\sin (2x + 15)^{\circ} = \frac{1}{3}$$

- 8. Make **q** the subject of the formula in $\frac{A}{B} = \boxed{\frac{P+3q}{q-3p}}$
- 9. a) Complete the table below for the functions $y = \cos (2x + 45)^{\circ}$ and $y = -\sin (x + 30^{\circ})$ for $-180^{\circ} \le x \le 180^{\circ}$.

	-180	-150	-120	-90	-60	-30	0	30	60	90	120	150	180
$y = Cos(2x + 45^{\circ})$	0.71		-	-0.71			0.71		-			0.97	
			0.97						0.97				
$y = -\sin(x + 30^{\circ})$	0.5	0.87			0.5			-0.87		-0.87			0.5

- b) On the same axis, draw the graphs of $y = \cos(2x + 45)^{\circ}$ and $y = -\sin(x + 30)^{\circ}$
- c) Use the graphs drawn in (b) above to solve the equation.

$$\cos (2x + 45)^{\circ} + \sin(x + 30)^{\circ} = 0$$

- 10. Without using tables or calculators evaluate $\frac{\sin 60^{\circ} \cos 60^{\circ}}{\tan 30^{\circ} \sin 45^{\circ}}$ leaving your answer in surd form.
- 11. (a) Complete the table below for the functions $y = 3 \sin x$ and $y = 2 \cos x$

X	0	30	60	90	120	150	180	210	240	270	300	330	360
3sin x			2.6	3			0	-1.5	-2.6	-3		-1.5	
2cosx		1.7	1.0			-1.7	-2	-1.0			1.0	1.7	2

- (b) Using a scale of 2cm to represent 1 unit on the y- axis and 1cm to present 30° on the x-axis, draw the graphs of y =3sinx and y = 2cosx on the same axes on the grid provided (c) From your graphs:
 - (i) State the amplitude of $y = 3\sin x$
 - (ii) Find the values of x for which $3\sin x 2\cos x = 0$
 - (iii) Find the range of values of x for which $3\sin x \ge 2\cos x$
- 12. (a) Fill in the following table of the given function:-

x	0	90	180	270	360	450	540	630	720	810
sin ½x	0			0.71					0	
3Sin $(\frac{1}{2}x + 60)$					-2.6					2.6

- (b) On the grid provided draw the graph of the function $y = \sin \frac{1}{2}x$ and $y = 3\sin \left(\frac{1}{2}x + 60\right)$ on the same set of axes
- (c) What transformation would map the function $y = \sin \frac{1}{2}x$ onto $y = 3 \sin \left(\frac{1}{2}x + 60\right)$
- (d) (i) State the period and amplitude of function : $y = 3 \sin(\frac{1}{2}x + 60)$
 - (ii) Use your graph to solve the equation: $3\sin(1/2x + 60) \sin(1/2x + 60) \sin(1/2x + 60) = 0$
- 13. a) Complete the table below giving your answer to 2 decimal places

X°	$0_{\rm o}$	30°	60°	90°	120°	150°	180°
2sinx°	0	1		2			
$1 - \cos x^{\circ}$			0.50	1			2

b) On the grid provided, using the same axis and scale draw the graphs of :-

$$y = 2\sin x^{o}$$
, and $y = 1-\cos x$ for

$$0^{\circ} \le x \le 180^{\circ}$$
, take the scale of

2cm for 30° on the x-axis

2cm for 1 unit on the y-axis

- c) use the graph in (**b**)above too solve the equation $2\sin x + \cos x^{\circ} = 1$ and determine the range of values of for which $2\sin x^{\circ} = 1-\cos x^{\circ}$
- 14. Solve the equation $2 \sin (x + 30) = 1$ for $0 \le x \le 360$.
- 15. (a) Complete the table below, giving your values correct to 1 decimal place

x	0	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	11 0°	120	130	140 °	150	160 °	170°	180°
10 sin	0	-	3.4	5.0		7.7		9.4	9.8	10	9.8	9.4		7.7		5.0	3.4		0

- (b) Draw a graph of $y = 10 \sin x$ for values of x from 0° to 180° . Take the scale 2cm represents 20° on the x-axis and 1cm represents 1 unit on the y axis
- (c) By drawing a suitable straight line on the same axis, solve the equation: $500 \sin x = -x + 250$
- 16. Complete the table below for the functions $y = \cos x$ and $y = 2\cos(x 300)$ for $\theta \le x \le 3600$

X	$0_{\rm o}$	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$\cos x$	1	0.87	0.5		-0.5	-0.87	-1.0		0.5	0		0.87	1
$2\cos(x+$	1.73		0	-1.0		-2.0	-	-1.0		1	1.73	2.00	1.73
30°)							1.73						

- (a) On the same axis, draw the graphs of y $\cos x$ and y $2\cos(x 30)$ for $0 < x < 360^\circ$.
- (b) (i) State the amplitude of the graph $y = \cos x^{\circ}$.
 - (ii) State the period of the graph $y = 2 \cos(x + 30^{\circ})$.
- c) Use your graph to solve

 $Cos x = 2cos(x+30^{\circ})$

17. Solve the equation $\sin(2\theta + 10) = -0.5$ for $0 \le \theta \le 2\pi^{c}$

18. Solve the equation

$$4 \sin 2x = 5 - 4 \cos^2 x$$
 for $0^{\circ} \le x \le 360^{\circ}$

19. (a) Complete the table given below by filling in the blank spaces

X	0	15	30	45	60	75	90	105	120	135	150	165	870
4cos 2x	4.00		2.00	0	-2.00	-3.46	-4.00	-3.46	-2.00	0	2.00		4.00
$2 \sin (2x + 30^{\circ})$	1.00	1.73	2.00	1.73		0	-1.00	-1.73	-2.00	-1.73		0	1.00

- (b) On the grid provided; draw on the same axes, the graphs of $y = 4\cos 2x$ and $y = 2\sin(2x + 30^{\circ})$ for $0^{\circ} \le x \le 180^{\circ}$. Take the scale: 1cm for 15° on the x-axis and 2cm for 1unit on the y-axis
- (c) From your graph:-
 - (i) State the amplitude of $\mathbf{v} = \cos 2\mathbf{x}$
 - (ii) Find the period of $y = 2\sin(2x + 30^{\circ})$
- (d) Use your graph to solve:-

$$4\cos 2x - 2\sin (2x + 30) = 0$$