1. Trigometry 2

1. Solve the equation:

(2 mks)

$$\sin \frac{5}{2}X = -\frac{1}{2} \text{ for } 0^0 \le X \le 180^0$$

2. (a) Complete the table below, leaving all your values correct to 2 d.p. for the functions $y = \cos x$ and $y = 2\cos (x + 30)^0$ (2 mks)

X^0	0_0	60^{0}	120^{0}	180^{0}	240^{0}	300^{0}	360^{0}	420^{0}	480^{0}	540^{0}
cosX	1.00			-1.00		0.50				
2cos(x+30)	1.73		-1.73		0.00					

(b) For the function $y = 2\cos(x+30)^0$

State:

(i) The period

(1 mk)

(ii) Phase angle

(1 mk)

(c) On the same axes draw the waves of the functions $y = \cos x$ and $y = 2\cos(x+30)^0$ for $0^0 \le x \le 540^0$. Use the scale 1cm rep 30^0 horizontally and 2 cm rep 1 unit vertically

(4 mks)

- (d) Use your graph above to solve the inequality $2\cos(x+30^{\circ}) \le \cos x$ (2 mks)
- 3. Find the value of x in the equation.

$$Cos(3x - 180^{\circ}) = \sqrt{\frac{3}{2}}$$
 in the range $O^{\circ} \le x \le 180^{\circ}$

(3 marks)

4. Given that $\tan \theta = \frac{11}{60}$ and θ is an acute angle, find without using tables $\cos (90 - \theta)$

(2mks)

5. Solve for
$$\theta$$
 if $-\frac{1}{4}$ sin $(2x + 30) = 0.1607$, $0 \le \theta \ge 360^{\circ}$

(3mks)

6. Given that $\cos \theta = \frac{5}{13}$ and that $270^0 \le \theta \le 360^0$, work out the value of $\tan \theta + \sin \theta$ without using a calculator or mathematical tables. (3 marks)

7. Solve for x in the range $0^0 \le x \le 180^0$

(4mks)

$$-8 \sin^2 x - 2 \cos x = -5$$
.

- 8. If $\tan x^{\circ} = {}^{12}/_{5}$ and x is a reflex angle, find the value of $5\sin x + \cos x$ without using a calculator or mathematical tables
- 9. Find θ given that $2 \cos 3\theta 1 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$
- 10. Without a mathematical table or a calculator, simplify: $\frac{\text{Cos}300^{\circ} \text{ x Sin}120^{\circ}}{\text{Cos}330^{\circ} \text{Sin} 405^{\circ}}$ giving your answer in $\frac{\text{Cos}300^{\circ} \text{ x Sin}120^{\circ}}{\text{Cos}330^{\circ} \text{Sin} 405^{\circ}}$ rationalized surd form.
- 11. Express in surds form and rationalize the denominator.

$$\frac{1}{\sin 60^{\circ} \sin 45^{\circ} - \sin 45^{\circ}}$$

12. Simplify the following without using tables;

Tan 45 + cos 45sin 60

13. Simplify the following surds in the form of $\mathbf{a} + \mathbf{b} \mathbf{c}$ where \mathbf{a} , \mathbf{b} , and \mathbf{c} are constants

$$\frac{5}{2\sqrt{2}} - \sqrt{5} + \frac{2}{2 \cdot 2 - \sqrt{5}}$$

- 14. John cycles from shopping centre **A** on a bearing of 120° for 5 km to shopping centre **B**. He then cycles on a bearing of 200° for 7 km to the shopping centre **C**. Calculate to 1 decimal place.
 - a) The direct distance from A to C.
 - b) The bearing of A from C.
- c) Bearing of B from C.