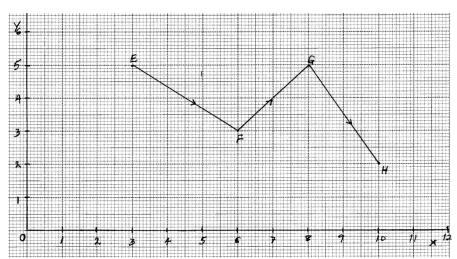
1. Vectors

- 1. Given that $4p-3q = \binom{10}{5}$ and $p+2q = \binom{-14}{15}$ find
 - a) (i) p and q (3 mks)
 - (ii) |p+2q| (3 mks)
 - (b) Show that A (1, -1), B (3, 5) and C (5, 11) are collinear (4 mks)
- 2. Given the column vectors $\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 6 \\ -3 \\ 9 \end{pmatrix} \mathbf{c} = \begin{pmatrix} -3 \\ 2 \\ 3 \end{pmatrix}$ and that $\mathbf{p} = 2\mathbf{a} \frac{1}{3}\mathbf{b} + \mathbf{c}$
 - (c) (i) Express **p** as a column vector (2mks)
 - (d) (ii) Determine the magnitude of \mathbf{p} (1mk)
- 3. Given the points P(-6, -3), Q(-2, -1) and R(6, 3) express PQ and QR as column vectors. Hence show that the points P, Q and R are collinear. (3mks)
- 4. The position vectors of points x and y are x = 2i + j 3k and y = 3i + 2j 2k respectively. Find x y as a column vector (2 mks)
- 5. Given that $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\mathbf{P} = 2\mathbf{a} + \mathbf{b} 3\mathbf{c}$. find $|\mathbf{p}|$ (3mks)
- 6. The position vectors of A and B are $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 8 \\ -7 \end{bmatrix}$ respectively. Find the coordinates of M which divides AB in the ratio 1:2. (3 marks)
- 7. The diagram shows the graph of vectors EF, FG and GH.



(a)
$$EH$$
 (1mk)

(b)
$$\mid EH \mid$$
 (2mks)

8.
$$OA = 2i - 4k$$
 and $OB = -2i + j - k$. Find AB (2mks)

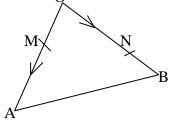
- 9. Show that P (4, 0 -4), Q (8, 2, -1) and R (24, 10, 11) are collinear. (3 mks)
- 10. Given that $\mathbf{p} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{q} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$, determine
 - a. |p+q| (1 mk)
 - (b) $\frac{1}{2} p 2q$ (2 mks)
- 11. Express in surds form and rationalize the denominator.

$$\frac{1}{\sin 60^{\circ} \sin 45^{\circ} - \sin 45^{\circ}}$$

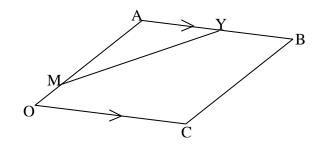
- 12. If $\overrightarrow{OA} = 12i + 8j$ and $\overrightarrow{OB} = 16i + 4j$. Find the coordinates of the point which divides \overrightarrow{AB} internally in the ratio1:3
- 13. Find scalars **m** and **n** such that

$$\mathbf{m} \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \mathbf{n} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

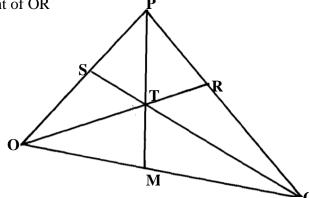
14. In a triangle OAB, M and N are points on OA and OB respectively, such that OM: MA = 2:3 and ON: NB = 2:1. **AN** and **BM** intersect at X. Given that OA = a and OB = b



- (a) Express in terms of a and b
 - (i) BM
 - (ii) AN
- (b) By taking $\mathbf{BX} = \mathbf{t}$ and $\mathbf{AX} = \mathbf{h}$ AN, where \mathbf{t} and \mathbf{h} are scalars, express \mathbf{OX} in two different ways
- (c) Find the values of the scalars t and h
- (d) Determine the ratios in which **X** divides :-
 - (i) **BM**
 - (ii) AN
- 15. OABC is a parallelogram, M is the mid-point of OA and $AX = \frac{2}{7}AC$, OA=a and OC = c



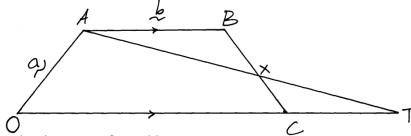
- (a) Express the following in terms of a and c
 - (i) MA
 - (ii) AB
 - (iii) AC
 - (iv) AX
- (b) Using triangle MAX, express MX in terms of a and c
- (c)The co-ordinates of A and B are (1, 6, 8) and (3, 0, 4) respectively. If O is the origin and P the midpoint of AB. Find;
 - (i) Length of OP
 - (ii) How far are the midpoints of OA and OB?
- 16. a) If A, B & C are the points (2, -4), (4, 0) and (1, 6) respectively, use the vector method to find the coordinates of point D given that ABCD is a parallelogram.
 - b) The position vectors of points P and Q are \mathbf{p} and \mathbf{q} respectively. R is another point with position vector $\mathbf{r} = \frac{3}{2} \mathbf{q}$ $\frac{1}{2} \mathbf{p}$. Express in terms of P and q
 - (i) PR
 - (ii) PQ, hence show that P, Q & R are collinear.
 - (iii) Determine the ratio PQ: QR
- 17. The figure shows a triangle of vectors in which OS: SP = 1:3, PR:RQ = 2:1 and T is the midpoint of OR **P**



- a) Given that OP = p and OQ = q, express the following vectors in terms of P and q
 - i) OR
 - ii) QT
- b) Express TS in terms of p and q and hence show that the points Q, T and S are collinear
- c) M is a point on OQ such that OM = KOQ and PTM is a straight line. Given that PT: TM = 5:1, find the value of k
- 18. Given that a = b, b = and c = and that $p = 3q \frac{1}{2}b + \frac{1}{10}c$ Express **p** as a column vector and hence calculate its magnitude /P/ correct to two decimal places
- 19. In a triangle OAB, M and N are points on OA and OB respectively, such that OM:MA= 2:3 and ON:NB= 2:1. AN and BM intersect at X. Given that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$
 - (a) Express in terms of a and b:-
 - (i) BM
 - (ii) ÃN
 - (b) Taking BX = kBM and AX = hAN where **k** and **h** are constants express OX in terms of
 - (i) a, b and k only
 - (ii) \vec{a} , \vec{b} , and \vec{h} only
 - (c) Use the expressions in (b) above to find values of k and h
- 20. In the figure below OAB is a triangle in which M divides OA in the ratio 2:3 and N divides OB in the ratio 4:1. AN and BM intersects at X

- (a) Given that $OA = \underline{a}$ and $OB = \underline{b}$, express in terms of \underline{a} and \underline{b}
 - (i) AN
 - (ii) BM
 - (iii) AB
- (b) If $\overrightarrow{AX} = \overrightarrow{sAN}$ and $\overrightarrow{BX} = \overrightarrow{tBM}$, where **s** and **t** are constants, write two expressions for OX in terms of \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{s} and \overrightarrow{t} . Find the value of **s** and **t** hence write OX in terms of **a** and **b**
- 21. A student traveling abroad for further studies sets a side Kshs. 115800 to be converted into US dollars through a bank at the rate of 76.84 per dollar. The bank charges a commission of 2 ½ % of the amount exchanged. If he plans to purchase text books and stationery worth US\$270, how much money, to the nearest dollar, will he be left with?
- 22. Given that:- r = 5i 2j and m = -2i + 6j k are the position vectors for R and M respectively. Find the length of vector RM \sim \sim
- OABC is a trapezium in which OA = a and AB = b. AB is parallel to OC with 2AB = OC.

 T is a point on OC produced so that OC: CT = 2:1. At and BC intersect at X so that BX = hBC and AX = KAT



- (a) Express the following in terms of a and b:-
 - (i) OB
 - (ii) BC
 - (b) Express $\mathbf{C}\mathbf{X}$ in terms of a, b and h
 - (c) Express **CX** in terms of a, b and k
 - (d) Hence calculate the values of ${\bf h}$ and ${\bf k}$
- 24. Given that $\mathbf{a} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = -3\mathbf{i} + 4\mathbf{j} \mathbf{k}$ find:

|a+b|.

25. In the figure below, **E** is the mid-point of **BC**. **AD**:**DC**=3:2 and **F** is the meeting point of

BD and AE

If AB = b and AC = c;

- (i) Express BD and AE in terms of b and c
- (ii) If $\mathbf{BF} = t\mathbf{BD}$ and $\mathbf{AF} = n\mathbf{AE}$, find the values of t ad n
- (iii) State the ratios in which F divides BD and AE
- 26. The coordinates of point **O**, **A**, **B** and **C** are (0, 0) (3, 4) (11, 6) and (8, 2) respectively. A point **P** is such that the vector **OP**, **BA**, **BC** satisfy the vector equation **OP** = **BA** + $\frac{1}{2}$ **BC** Find the coordinates of **P**
- 27. A point Q divides AB in the ratio 7:2. Given that A is (-3, 4) and B(2, -1). Find the co-ordinates of Q